モノづくり戦略

変化にスピーディに 対応するため モノづくりに関する 全てのリードタイム 短縮にこだわって いきます。

S

5

 \Box

代表取締役副社長・CMO 安田洋

加速する環境変化への対応

現在、各国・地域では地政学的リスクの高まり、安全基準や CNに関する法規制の強化、労働人口の減少などの変化が加 速しており、自社のみならずサプライチェーンも含めた全方位 で対応していく必要があります。

例えばHEVの進展は、各国の政策や充電インフラ整備の特 徴により地域で普及差が生じているため、燃料系部品の生産 も継続する「マルチパスウェイ」への対応が求められています。

また重点地域である米州においては、今後も自動車需要の 伸びが期待されるとともに関税政策への対応などから現地生 産の拡大が進むと想定される地域のため、短期間での生産準 備と省人化の両立が求められます。

さらにインドでは乗員保護に関する安全規制の強化でエア バッグの需要が急増しており、品質最優先の生産工程の迅速 な立ち上げが求められます。

これら課題を解決しすべての顧客要望に応えると同時に、 競争力を継続的に高めていくためには、変化にスピーディに対 応していかなくてはなりません。

リードタイム短縮へのこだわり

そのためには環境変化に左右されることなく「良いものを、 必要な時に、必要なだけ」すべての顧客に届けるために、「生産 リードタイム |と「生産準備リードタイム |の短縮にこだわり、 機動性の高い生産工程を迅速に立ち上げる必要があります。

例えば米州では、デジタル上で精度の高い工程設計・設備 設計・ロボットシミュレーションなどを事前に行うことで、実際 の工程設置時のロスを低減し、少人数のエンジニアでも迅速 かつ高品質な生産準備を可能とします。

この実現に向けては、当社が培ってきたTPS思想に基づく 「徹底的なムダの排除」と、生産技術の革新による「新たな価 値創造と生産性の飛躍的向上」、さらに最新のIoTおよび自動 化技術を組み合わせた「工場の進化」によって達成させていき ます。

インドでは顧客要望に沿った製品を生産・出荷指示する工 場IoT技術とトレーサビリティシステムにより、量変動にも即 応可能な生産体制と品質を保証します。そのためには仕入先 や納入先を含むサプライチェーン全体のリードタイム短縮と 「モノと情報」の連携構築が求められます。

社会的課題の解決

リードタイム短縮の取り組みによる効果は、生産性の向上 や競争力の強化にとどまりません。

変化に即応できるシンプルかつスリムな工程は、技能員の 負担を軽減し、使用エネルギーの最小化やデータ活用による 品質保証など、社会的課題の解決に貢献する新たな価値を提 供します。

これらを昨年提唱した「TG先進工場コンセプト」の実現を 通じて、ステークホルダーの皆様に企業価値の向上を提供し ていきます。

モノづくり戦略

【生産技術革新によるリードタイム短縮重点取り組み

『型内塗装技術』(牛産リードタイム短縮)

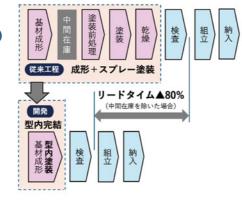
当社の持つ樹脂射出成形のコア技術を用いて、従来の成形 一塗装工程の大幅なリードタイム短縮と、塗装では表現でき ない平滑な加飾表面の実現、及び部品製造時におけるCO2排 出量低減を両立させる型内塗装技術を開発。

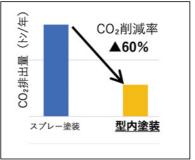
成形ー塗装を金型内で一度に行うため従来の塗装や乾燥 などの工程が不要となり工程数が半減、リードタイムを80% 短縮とCO2排出量を約60%削減させ、さらに技能員の作業環 境も大幅に改善します。

品質面ではガラス面などと一体感のある非常に光沢のある 加飾表面を実現。さらに当社独自の金型設計・設備制御技術 と、塗料メーカーとの材料開発で難易度の高い大型製品にも 適用を可能としました。

リードタイム短縮に加え社会的課題であるCNにも貢献する 技術で、全てのステークホルダーのニーズに応えます。

型内塗装製品:ラゲージパネル




効果

リードタイム

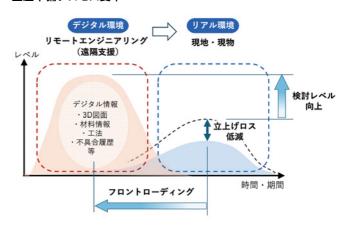
豊田合成について

CO2 低減

『業務プロセスを変革するDX技術』

(牛産準備リードタイム短縮)

短期間で高品質な生産準備を実現し、競争力を継続的に高 めていくためには、デジタル化されたデータを活用し、確認や すり合わせ作業を前倒しで行う「フロントローディング」によっ て、開発初期から高精度な検証を行うことが重要です。これに よりリアル環境での調整・やり直しなどの立上げロス工数の 低減を図るとともに、創出されたリソーセスでさらに検証精度 を上げていきます。


また工場全体の3D点群データなどを用いて工程レイアウト やロボット動作をデジタルツイン上でシミュレーションするこ とで、作業動線やサイクルなどを事前に確認でき、機動性のあ る工程づくりが可能となります。

価値創造を支える基盤

これらデジタル上の取り組みは、国や時差に関係なく生産 準備状況を遠隔支援できるため、生産準備期間を短縮できま す。さらにモノづくりに関する情報を共通プラットフォームで 一元管理することで、世界中の拠点が常に最新情報に基づい た迅速な判断を行うことができます。

この活動を、部品調達から金型・設備開発、製造、出荷まで の全工程に組み込み、デジタル技術を活用した生産準備プロ セスの変革を推進していきます。

生産準備プロセス変革

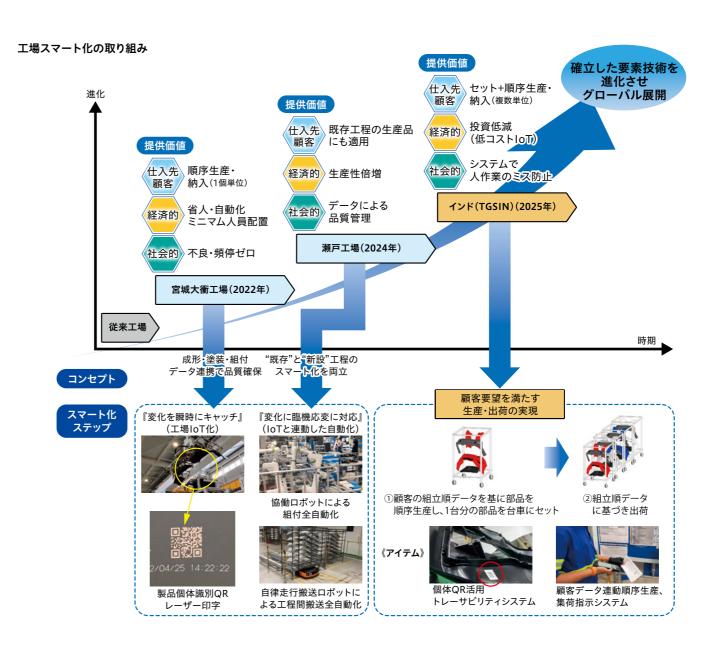
豊田合成について

モノづくり戦略

【IoT・自動化技術による工場の進化

TGスマートファクトリーの実現

顧客要望に即応した多種多様な部品の生産・納入を実現するため、工場は最新のIoTと自動化の技術を組み合わせて工程の機動性を高めるとともにデータの活用で先手を打った判断が可能な、変化にスピーディに対応できる工場でなければなりません。


当社では2022年に宮城大衡工場をスマート化のモデル工場として立上げ以降、2024年には既存の瀬戸工場に対し技術を導入、以降国内で培ったノウハウをグローバル地域・拠点の課題に合わせて順次展開しています。

顧客課題解決にも貢献するスマート工場 TGSIN(当社 南インド拠点)

当社顧客が仕様の異なる車両を連続生産する際、TGSINが生産・納入する外装製品はサイズが大きく、全種類の部品を在庫として持つと顧客・TGSINの双方に在庫スペースや運搬のムダが発生します。

この課題を解決するため、IoT技術による色間違い防止の個体QRトレーサビリティシステムと、IoTによる順序生産・集荷指示システムを開発し、顧客の組立順に合わせた「順序生産・順序納入」を実現。オーダーに応じた効率的な生産により、顧客・TGSIN双方で工場内在庫を最小限に抑え、スペース生産性を向上。総リードタイムの短縮と人為的ミスの防止も実現しています。

加えて、輸送回数の削減によりCO₂排出も抑制。社会課題の解決にも貢献しています。

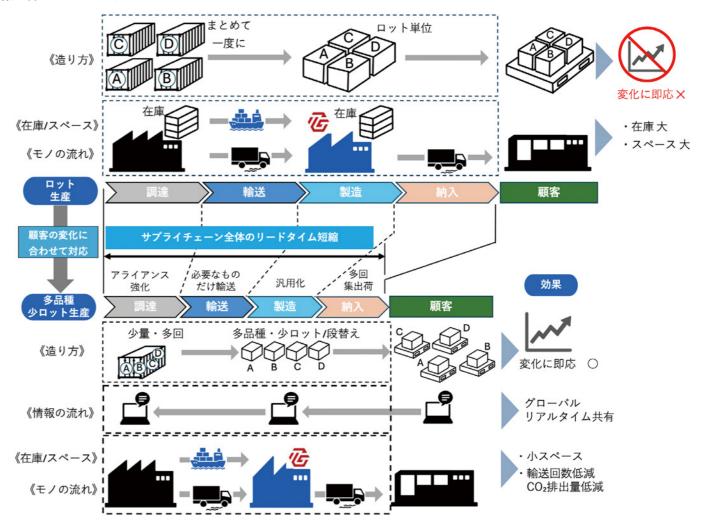
価値創造の戦略

モノづくり戦略

サプライチェーン全体のリードタイム短縮

当社のグローバル顧客の受注量の変動や製品仕様の変更 に迅速に対応するためには、調達・輸送・組立・納入までを含 むサプライチェーン全体のリードタイム短縮が必要です。

そのため国内外のサプライヤーとも連携し、顧客への納品 形態やタイミングに合わせて当社のモノづくりのあり方を柔 軟に変えることで、過剰在庫や余剰作業の削減にもつながり ます。


また、モノの流れにあわせて情報の流れの最適化も重要で す。サプライチェーン上の情報をデジタル化し、グローバルで リアルタイムに共有することで、誰もが最新情報に基づいたス ピーディな判断を可能とします。

このように、モノと情報の両面で最適化を進めることで、世 界中の拠点があたかも一つの工場のように連携し、常に顧客 のニーズに迅速に対応できる体制を構築していきます。

さらには、これらの取り組みを通じて、当社の生産技術力も 向上し、より高品質で効率的なモノづくりを実現させること で、顧客に対してもリードタイム短縮といううれしさを提供す ることができます。

変化に合わせたモノづくり

豊田合成について

