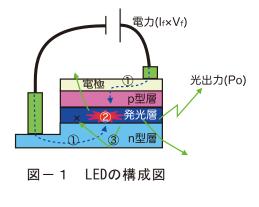
青色LEDの効率解析


Energy Efficiency Analysis of Blue LED

牛田泰久*1

1. はじめに

青色LEDは、液晶バックライトの光源として、 大きな役割を果たし、爆発的に普及した.近年で は、照明分野でも普及が進み、その重要性は高ま る一方である.この普及の要因の一つは、発光効 率の高さであった.LEDは電力を光に変換する素 子である.入力された電力に対して得られる光の 量の割合を発光効率と呼び、LEDの性能の指標と している.現在、一般的な青色LEDの発光効率は 60%を超え、研究段階では80%以上の変換も可能 となってきている.一方で、この効率を決定して いる青色LEDの発光・非発光のメカニズムは必ず しも明確にわかっておらず、更なる効率向上の為 には、理論的な解釈が待たれている.

本報告では,豊田合成で実施してきた青色LED の効率解析の手法を紹介する.

2. LEDの効率

青色LEDの構造は、p型層、n型層に挟まれた発 光層からなるGaN系半導体と、電流を流すための 電極(金属・透明電極)からなる(図-1).

LED内で電力を光に変換する過程には、キャリ ア輸送,発光,光伝播の3つのステップがある.

それぞれのステップにエネルギーを失う(ロス)要因が存在する.ゆえに、ステップ毎に効率が存在する.以下に簡単に紹介する(図-2).

第1のキャリア輸送のステップは、電極から入 力された電子を発光層へ輸送するステップである. その経路となる材料の抵抗などにより、無駄なエ ネルギー消費が発生する.このステップでのエネ ルギー効率を駆動効率(DE)と定義する.

第2の発光ステップは,発光層へたどり着いた 電子の持つエネルギーが光へ変換されるステップ である.結晶欠陥や電子間の相互作用,電子が発 光層から漏れてしまうオーバーフローと呼ばれる 現象など,発光につながらないエネルギーの消失 (ロス)が存在する.ここでの効率は内部量子効 率(IQE)と呼ばれている.

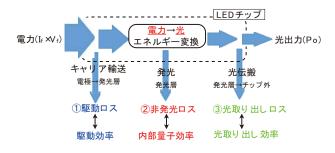


図-2 LEDのエネルギー変換過程

*1 Yasuhisa Ushida オプトE第1技術部 オプトE開発室

最後の光伝播ステップは、発光層で変換された 光が、チップの外へ伝播するステップである.こ のとき、光の伝播経路である材料(結晶自身や金 属)で光吸収が発生する.この効率を光取り出し 効率(C_{ext})と呼んでいる.

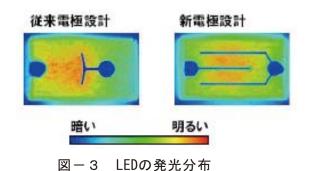
理論的には、前述した、3ステップの各効率を 用い、LEDに入力された電力に対して、LEDから 出力される光の量の割合である発光効率(WPE) を次のように示す.

 $WPE = DE \times IQE \times C_{ext.}$ 式-1 また,一般的に使用される外部量子効率(EQE) は次式で定義される.

実験的事実からの見積もり方法は、次の式で見 積もることができる.それぞれ、電流値 I_f 、電圧 値 V_f 、光出力 V_f 、発光波長 λ としたとき、次式 で与えられる.

$$WPE = \frac{Po}{I_f \times V_f} \qquad \qquad \vec{x} - 3$$
$$EQE = \frac{Po}{I_f \times hc/\lambda} \qquad \qquad \vec{x} - 4$$

理論的,実験的双方からの見積もりの式からは, 内部量子効率IQE及び光取り出し効率 C_{ext} の分解 は不可能である.現在までに学術的知見から, 様々なモデルが提案され,実験事実を解釈する試 みがなされてきた.しかしながら,現在のところ, 内部量子効率(IQE),光取り出し効率(C_{ext} .) の分解はできていない.従ってLEDの効率低下の 根本原因に深く迫ることができず,技術開発は多 方面に展開され,手当たり次第というような状況 になる.


3. 目的

LEDの製造工程は,n型,発光層,p型の半導体 を結晶成長するプロセスと,その半導体に電流を 流すための電極を形成するプロセス,及び,その 後ウエハを分離し,LEDにする分離プロセスで成 り立っている.それぞれのプロセスにおける工夫 や改善が,LEDの発光効率を向上させてきた.こ れら3つのプロセスに対する工夫・改善は,前述 した3つの効率と深く関係している.結晶成長プ ロセスは内部量子効率に,電極形成プロセスは駆 動効率と光取り出し効率に,チップ分離プロセス は光取り出し効率と深い関係がある.それぞれの 効率を分離し,解析することで,どのプロセスに 力を入れて開発をすればよいか自明になる.市 場・顧客のニーズにいち早く応えるために,最 短・最大効率の開発を実行することが事業継続に 重要となる.

我々は、LEDの効率を出来る限り単純に解析し、 3つの効率を分離する手法の開発に取り組み、一 定の結果を得たのでここに報告する.最も重要な キーワードは、測定サンプルの工夫である.

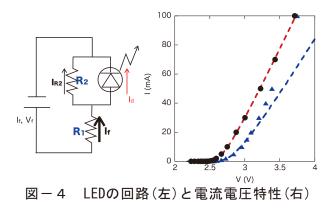
4. 試料作成

解析は可能なかぎり単純な考え方で実施したい. そのために必要な工夫は、LED内での発光分布の 均一化である. 例えば、LEDチップ内の発光に分 布がある場合、電流を多く流している場所と少な い場所が混在していると考えられる. 部位毎に電 流密度の異なる非常に複雑な電流回路を考えなくて はならなくなる.実際のLEDの発光分布を図-3 に示す.黒いところが、電極である. 左図は、従 来からある一般的なLEDの例である. LED内で明 るい部位と暗い部位が共存している. これは部位 毎に電流密度が異なることを示唆している.こう した試料を用いた解析には、少ない電流で駆動す るダイオードと高い電流で駆動しているダイオー ドの並列回路を考える必要があり、さらに電流値 を変化させた場合の発光分布の変化をも考慮する 必要があり、解析は複雑となる.われわれは、こ の問題に対処する技術を確立しており、都度改善 を繰り返してきた. 図-3右図の様に、均一な発 光をさせることができている.この技術に関する レビューは,豊田合成技報2011 Vol.53. p.16を参

照されたい.発光分布の均一化の工夫が,次に示 すような解析の単純化に大きく貢献した.

5. 解析手法

前述した3つの効率を定量的に分解するため, LEDの電流If-電圧Vf特性及び,光出力Poと発光 効率WPEの電流密度J依存性の測定結果を解析し た.以下に,簡単に示す.


5-1. 電流-電圧特性の解析

LEDは、ダイオードであり、電流密度Jと電圧 Vの関係は、一般的に次式で示される.

ここで、J0: 飽和電流密度, e: 電気素量, η : ダイオード理想係数, kb: ボルツマン係数, T:温 度(K) である.実際のLEDは、図-4左図に示 すような、ダイオードに直列(R1)及び並列 (R2)に抵抗が並んだ簡単な回路を仮定すること で、電流Ifと電圧Vfの関係を説明する事が出来る はずである.しかしながら、従来のLEDチップで は、前述したような電流密度の分布によって複雑 な回路となり、単純な回路では実験値を説明する ことができなかった.

LEDチップの電流・電圧特性を図-4右に示す. 均一に発光していない場合(▲)では、シミュレ ーション(点線青)とは一致しなかったが、均一 な発光を得たチップ(●)は、シミュレーション (点線赤)と良い一致を示す.解析には図-4左

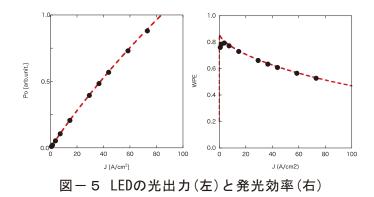
図の単純な回路を仮定し、以下のパラメータを使 用した. R1=6Ω, R2>6MΩ.

5-2. 光出力,発光効率の電流密度依存性の 解析

前述した, 3つのステップでの効率を見積もる ために, どのようなエネルギーロスを仮定するか 重要である.

キャリア輸送ステップでは、電子の輸送(R1の 経路)に必要なエネルギーや、リークパス(R2の 経路)を通過する電子は、光に変換されないエネ ルギーロスと考えられる.先ほどの電流・電圧特性 の解析で見積もったR1,R2の値を利用し、その抵 抗成分のエネルギーロスを次式の様に定義する.

$R1 \times I_f^2 + R2 \times IR_2^2$ $\exists t - 6$


発光ステップでは、発光層へ到達した電子のエ ネルギーの光への変換に関するエネルギーロスを 考慮する必要がある.このエネルギーロスは電流 依存性を示すことがわかっており、ロス量を $f(I_d)$ と定義する.詳しく解析することで、発光 メカニズムや、エネルギーロスのメカニズムが見 えてくる.様々なメカニズムが提案されているが、 現時点で実験を十分説明できるモデルはない.

光伝播ステップでは、発光層で変換された光が、 チップ内の材料(金属や結晶)に吸収されること によるエネルギーロスを考える.この場合、発光 層で発生した光の一定の割合で減衰すると仮定し、 係数 C_{ext} (≤ 1)との積で表す.

入力したエネルギーから,3種のエネルギーロ ス成分を差し引いた残りが,光出力として検出さ れる.このモデルによると,光出力Poは次式のよ うに定義される.

 $\begin{aligned} Po(mW) = ((I_f \times V_f - (R_1 \times I_f^2 + R_2 \times I_{R_2}^2) - f(I_d)) \times C_{ext.} \\ \overrightarrow{R_L} = 7 \end{aligned}$

先に見積もった、R1、R2の値を用い、式-3、 式-7をそれぞれ用い実験結果をフィッティング する事で $f(I_d)$ 、 $C_{ext.}$ を求めた、結果を図-5に 示す、実験結果(\bullet)とシミュレーション結果

(破線)は良い一致を示している.ここで, C_{ext} =0.87が求められた.

フィッティングにより求められたパラメータ及 び、式-1、式-3、式-7より所望の電流密度 での3つの効率を分解する事が出来る.たとえば、 20A/cm²駆動時の各効率を見積もると次の様にな る.内部量子効率87%、光取り出し効率87%、駆 動効率97%.それぞれの効率を分解し、数値化す ることに成功した.

LEDチップの電流-電圧特性および,光出力・ 発光効率の電流密度依存性の測定結果があれば, 3つ効率を分離した解析ができるという簡単な解 析手法を構築した.今回割愛したが,内部量子効 率を低下させている要因 $f(I_d)$ に関して更なる解 析をすすめており,効率低下メカニズムに関して ノウハウが構築されつつある.この解析を基に, 内部量子効率の向上を加速させている. 液晶バックライト向けLEDの光り取り出し効率の 向上の例を図-6に示す.近年急速な改善を実施 してきた.今後,照明などの市場拡大に伴いLED に求められるニーズ(性能,使用電流,価格,販 売時期)もますます広がり,開発はさらに困難で 広い範囲に拡大することが予測される.今回紹介 した解析を基に,更なる効率的な技術開発を推進 し,ニーズにいち早く応えることで,LEDの発展 に貢献していきたい.

牛田泰久

6. まとめ

LED内での電流の分布を均一化させる技術を用 い,簡便にLEDチップのエネルギー収支を解析す る手法を見いだした.解析を実施できるようにな ったことで,より緻密でピンポイントな開発を推 進できる環境を整えた.

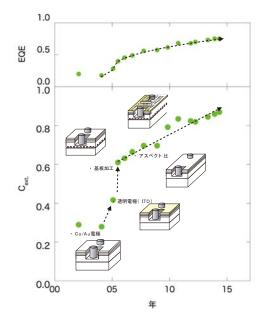


図-6 光取り出し効率の改善と外部量子効率