パワーデバイスの計測技術

林 伸亮 1, 恩田敬治 1, 吉田卓矢 1 Power Device Measurement Technology Nobuaki Havashi*1. Keiji Onda*1. Takuva Yoshida*1

1. はじめに

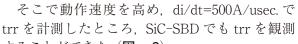
近年、パワーエレクトロニクス機器の更なる小 型化・高効率化を目指して、窒化ガリウム (GaN) をはじめとするワイドギャップ半導体を用いたパ ワーデバイスの研究開発が盛んに行われ、鉄道車 両のインバータに採用されるなど実用段階に移行 しつつある.

豊田合成では GaN 系青色 LED の技術を生かし て、縦型の GaN デバイスの開発を進めている。

市販されているパワーデバイス測定装置は、従 来のSi向けスペックであるため、縦型GaNデバ イスのような高速動作ができるデバイスを正しく 評価するため、計測装置の開発を行った.

本稿では、パワーデバイスの高速性能を評価す るための計測回路技術を報告する.

2. 動特性試験機の開発


高速動作を示す指標として逆回復時間(Reverse recovery time, trr) がある.

評価条件を決めるために、代表的な SiC-SBD のデータシートを調査したが、逆回復時間につい ての記載がなかった. そこで従来の Si-SBD 向け スペックの試験条件として MIL 規格 1) に掲載さ れている計測条件を参考に、Si-SBD と SiC-SBD の trr 計測を行った. (計測条件は VF=100V. IF=15A, RL=100uHとし, VgとRgでdi/dtを決定)

di/dt=100A/usec. の計測条件では、**図-1**の 様に Si-SBD で trr が計測できたが、SiC-SBD で はtrr は計測できなかった ($\mathbf{Z}-\mathbf{2}$).

Si-SBD に比べ SiC-SBD は動作が速いため、 di/dt=100A/usec. の計測条件ではSiC-SBD の動 作速度の評価に適していないと判断し、 更に高速 の計測が必要と考えた.

することができた ($\mathbf{Z}-\mathbf{3}$).

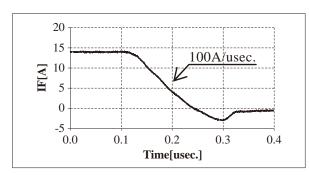


図-1 Si-SBD 電流波形

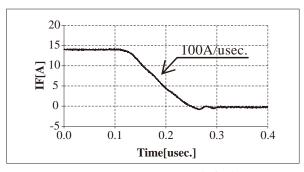
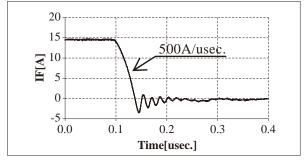
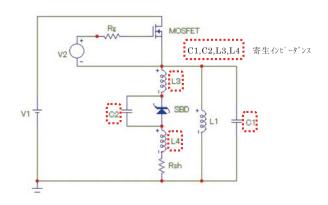


図-2 SiC-SBD 電流波形

その一方で、図-3の様に電流波形に振動(リ ンギング) が発生し、正しい計測結果を得ること が困難になることが判明した.




図-3 SiC-SBD 電流波形(改善前)

GaN-SBD は SiC-SBD と同等以上の動作速度 となり、高速試験時に正しい計測結果を得るため に,リンギングを低減させることが必要と考えた.

電子デバイス開発部 電子技術室

リンギングは計測回路の寄生インピーダンスに 起因する可能性が高い^{2),3)}ため、回路シミュレー タにて回路の寄生インピーダンスを試算した.

図ー4に示す計測回路の配線パターンによる 寄生インピーダンスをシミュレータ上に追加し、 図ー5のシミュレーション結果から、MOSFET ソース~SBDアノード間と、SBDカソード~ R2シャント抵抗間に、合わせて約15nHの寄生 インピーダンスがあることが解った。

図ー4 シミュレーション回路

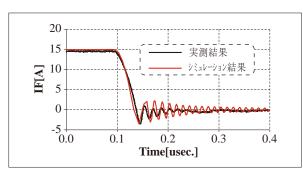
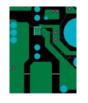
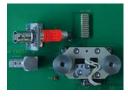




図-5 シミュレーション結果

この寄生インピーダンスがリンギングの原因と断定し、デバイスセット計測回路の配線パターン幅を見直した($\mathbf{図-6}$).

改善前 → 改善後

治具(改善後)

図-6 配線パターンと計測回路

このパターン幅の増強により、寄生インピーダンスを約5nHまで低減することができ、図-7に示す様な良好な電流波形を得る事ができた.

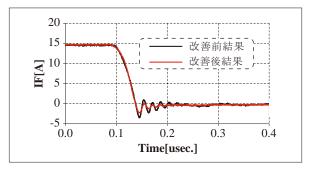


図-7 SiC-SBD 電流波形(改善後)

3. まとめ

配線パターンの寄生インピーダンスを回路シ ミュレーションを用いて定量化し, 高速デバイス に対応できる計測回路を開発した.

参考文献

- 1) MIL-STD-750-4 Test condition D
- 2)石川光亮, 小笠原悟司, 竹本真紹, 折川幸司: 「圧銅多層基板を用いた SiC-MOSFET イン バータの開発」, 2016年電気学会産業応用部 門大会
- 3)中村悠太, 葛本昌樹, 赤木泰文, 椋木康滋, 堀口剛司, 中山靖:「ゲートドライブモデル を考慮した SiC-MOSFET ターンオン動作の シミュレーション検討」, 2016年電気学会産業応用部門大会

萝 老

林 伸亮

恩田敬治

吉田卓矢