超低抵抗 GaN 基板を用いた縦型 GaN パワー半導体の開発

西井潤弥*1、守山実希*2

Development of Vertical GaN MOSFETs on Bulk GaN Substrates with Ultra-low Resistivity

Junya Nishii^{*1}, Miki Moriyama^{*2}

1. はじめに

令和4年4月から、環境省による『超低抵抗GaNウェハを用いた高効率インバータの開発・検証事業』に、パナソニックHD株式会社、大阪大学、名古屋大学とともに参画することになった¹⁾.同プロジェクトはGaNの種結晶から始まり、電気自動車へのGaNパワー半導体の実装までの全サプライチェーンを包括する大型プロジェクトで、豊田合成はNaフラックス法を用いたGaN種結晶の育成技術開発、OVPE(Oxide Vapor Phase Epitaxy)法を用いた超低抵抗GaN基板の試作、および縦型GaNパワー半導体開発を分担する.

2. GaN 基板開発

本プロジェクトの前身ともいえる令和 3 年度までの環境省助成事業『GaN 技術による脱炭素社会・ライフスタイル先導イノベーション事業』では、大阪大学で開発された Na フラックス法の技術を豊田合成が所有する大型育成炉 $^{2)}$ に移管し、直径 6 インチ超の大口径 GaN 種結晶作製を成功させた($\mathbf{Z}-\mathbf{1}$) 3 . また、Na フラックス GaN 結晶上に HVPE(Halide Vapor Phase Epitaxy)法で GaN を厚く再成長させて作製した基板を用いると、縦型 GaN パワーデバイスの歩留まりが大幅に改善できることも明らかになった 4).

今回のプロジェクトでは「GaN ならでは」の 省エネルギー化実現を目指し、HVPE 法に代わ り OVPE 法による超低抵抗 GaN(OVPE-GaN) 基板を Na フラックス種結晶上に再成長させる技 術に挑戦する.次節で述べるように、超低抵抗基 板は GaN パワーデバイスの性能を飛躍的に向上 させるための切り札になり得るが、OVPE 法は HVPE 法よりも高温成長が必要であり, Na フラッ

図ー1 Na フラックス法で育成した GaN 種結晶

クス種結晶の適用は容易ではない. 豊田合成では、超低抵抗 GaN 基板の実現を加速させるべく、種結晶の大口径化や更なる高品質化といった Na フラックス法からのアプローチに加え、大阪大学、パナソニック HD と連携して Na フラックス種結晶上への OVPE 成長技術の開発にも着手する.

3. 縦型 GaN パワー半導体開発

OVPE-GaN 基板の抵抗率は $7.8 \times 10^{-4}~\Omega$ cm が報告されており $^{5)}$, SiC 基板の抵抗率の 1/10, 市販の HVPE 法で成長した GaN 基板に対しても 1/7 となる.

この超低抵抗性能を活かすためには、基板厚み方向に電流を流す縦型デバイス構造が適している。OVPE-GaN 基板を用いることで、パワー半導体の主要な性能であるチップ面積で規格化したオン抵抗は、 $\mathbf{Z}-\mathbf{2}$ に示すように絶縁破壊耐圧~2000 V付近までの領域で $0.1 \text{ m} \Omega \text{ cm}^2$ 程度まで低減できる可能性がある。既に耐圧 1.8 kV 設計の pn ダイオードでは $0.08 \text{ m} \Omega \text{ cm}^2$ が達成されている 5 . 現状の豊田合成の開発品の規格化オン抵抗は $1.5 \sim 1.8 \text{ m} \Omega \text{ cm}^2$ で SiC の性能限界に近い値を示しているが OVPE-GaN 基板を用いることで更なる低抵抗化が期待できる.

^{*1} ライフソリューション第3技術部 パワーデバイス開発室

^{*2} 新価値開発部 無機系開発室

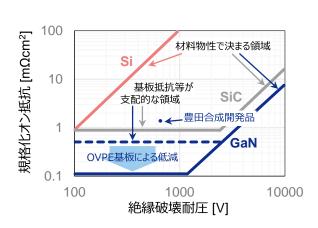


図-2 規格化オン抵抗と耐圧性能の比較

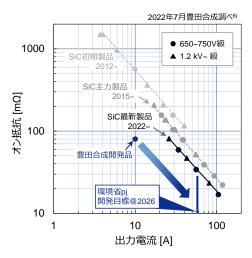


図-3 市販の SiC パワー半導体との性能比較

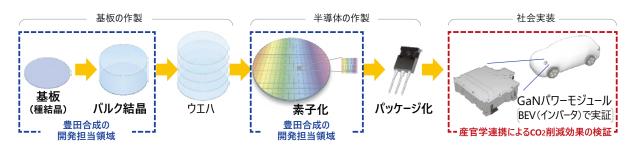


図-4 環境省プロジェクトにおける GaN パワー半導体の開発プロセス

一方で実用上のオン抵抗は市販の SiC パワー半 導体に対して、現状では低いとは言えない。オン 抵抗のベンチマーク(図ー3)と、最近得られた 開発結果を比較すると、低オン抵抗化のためには 大電流化、すなわちチップ面積の大型化が必要で あるとわかる。これにはデバイスプロセスの歩留 り向上と基板の転位密度低減の両輪で取り組むこ とが必要であり、今後はチップ面積の大型化に向 けてプロジェクト内での基板開発と連携して課題 解決に取り組んでいく。

4. 将来展望

このプロジェクトでは、開発した縦型 GaN パワー半導体を使い、名古屋大学において電気自動車用インバータの実証を進める計画である(**図-4**). これらの技術でインバータの高効率化を実現し、CO₂ 排出量低減に貢献する.

謝辞

本研究は環境省『革新的な省 CO2 実現のため の部材 (GaN) や素材 (CNF) の社会実装・普 及展開加速化事業』の委託を受けて行われた.

参考文献

- 1) https://www.env.go.jp/press/110692.html
- 2) 守山ら,豊田合成技報, vol. 56, p. 61-70 (2014).
- 3) https://www.toyoda-gosei.co.jp/news/detail/?id=1061
- 4) https://www.env.go.jp/press/111167.html
- 5) J. Takino *et al.*, Appl. Phys. Express13, 071010 (2020)
- 6) SiC パワー半導体のデータシートをもとに作成

西井潤弥

守山実希